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Dynamical group model of superfluid helium three 

A I Solomon 
Faculty of Mathematics, The Open University, Milton Keynes, England 

Received 9 February 1981 

Abstract. We treat a model of an interacting anisotropic superfluid Fermi system, and 
describe the associated spectrum-generating Lie algebra. This algebra is a direct sum of 
algebras isomorphic to so(6). Subalgebras correspond to the BCS model of superconduc- 
tivity (so(3)j, and superfluid helium three (so(5)). The spectrum, and so-called unitary 
states, are expressed in terms of invariants of the algebra. 

1. Introduction 

The method described in the following pages to treat a model of an anisotropic 
superfluid Fermi system is based on a similar treatment of an interacting system of 
bosons given previously by the author (Solomon 1971). The common strategy adopted 
is as follows. We first write down a model of the interacting systenf in which we 
introduce the superfluidity behaviour as a pairing of opposite momentum (but not 
necessarily opposite spin) operators. We then use a Hartree-Fock approximation to 
obtain an essentially linearised Hamiltonian. (This linearisation is achieved in the 
boson case by the Bogoliubov approximation in which the lowest-momentum-state 
creation and annihilation operators are replaced by a c-number.) The linear, reduced 
Hamiltonian is then expressed as an element of a Lie algebra g-the spectrum- 
generating algebra of the model. 

It turns out that in both boson and fermion cases g is the direct sum of isomorphic 
Lie algebras labelled by the momentum suffix k, 

so that the algebraic treatment of the model is essentially governed by the g k .  In the case 
of interacting bosons, we have 

g k  -so(2, 1) 

while in the case of interacting fermions, one obtains 

When the latter case is specialised to spin-singlet pairing (S=O),  the BCS model of 
superconductivity results, for which 

g k  -s0(3), 
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while if one specialises to spin-triplet pairing ( S  = l), a model for superfluid helium 
three results, for which 

g k  - s 0 ( 5 ) +  

The next step towards diagonalisation is to choose the lowest-dimensional faithful 
representation of the Lie algebra g k ;  the Hamiltonian is then expressed as a matrix M 
which is 2 x 2 in the helium four case, and 4 X 4 in the helium three case. The rotation 
which effects diagonalisation is an automorphism of the Lie algebra, which we may call 
the Bogoliubov transformation; however there is no need to perform this rotation 
explicitly. Instead we may make use of the invariants 

Tr M", n = 1 , 2 , 3  , . . . ,  

of which there are only 1 independent ones associated with a rank-l Lie algebra. For the 
rank-1 algebra so(2, 1) of helium four (or so(3) of the BCS model), this means that the 
single invariant Tr M 2  leads to the spectrum immediately. In the case of the rank-2 
algebra so(5) of helium three, the two invariants, expressed in terms of T r M 2  and 
TrM4,  give the spectrum in general. The unitary states, which have a degenerate 
spectrunl, correspond to the vanishing of one of the invariants. 

As the common strategy in both the boson and fermion cases involves diagonalisa- 
tion of the Hamiltonian to obtain the energy spectrum by going to a small-dimensional 
faithful representation of the spectrum-generating algebra, we first exemplify this 
process by treating the simpler boson case. 

2. Superfluid boson model 

We take as our model the weakly interacting boson system described by the Hamil- 
tonian Yt = X k  Hk,  where 

The operators ak and U ;  represent the annihilation and creation operators for a helium 
four atom of momentum k ;  they obey 

[ak, a; , ]=8kk' .  

&k is the energy of the atom, and v k  is the Fourier transform of the two-body interaction 
potential; they satisfy 

& k  = & - k ,  v, = V- , .  

The model is rendered tractable by the assumption of macroscopic occupation of the 
k = 0, zero-momentum, state; this enables one to treat the a. and U :  operators as the 
ordinary c-number fi, where N is the number density of k = 0 bosons. This is the 
assumption which gives rise to the superfluid character of the model. With this 
simplification the Hamiltonian reduces to 2 k HYd, where 

HYd = $ ( E k  +NVk)(alak +azka-k)+$NVk(a:a+k +aka-,). 
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We now exhibit Hrd as an element of a Lie algebra by defining the following operators: 
( k )  - + +  x --i(aka-k +aka-k), 

yck’= ii(a:a?k -aka-k), 

Z‘k’=i(a:ak +a+ka-k + 1). 

These operators obey the commutation rules 

[ X ,  Y ]  = -iZ, [ Y, Z ]  = ix, [Z,  XI = i Y  

(on suppressing the momentum superscript k), which are the commutation relations of 
the real Lie algebra su(1, l )  - so(2, 1). (The symbol i appears on the right-hand side as a 
result of the physicist’s preference for Hermitian operators.) This then completes the 
initial part of the strategy outlined in the Introduction, namely to express the Hamil- 
tonian as an element of a Lie algebra g. In this case 

g - 1  g k  
k 

where each g k  is isomorphic to so(& 1) or, equivalently, su(1, 1). In terms of the 
generators of g k ,  the reduced Hamiltonian may be written (up to a c-number additive 
constant) as 

Hrid = bkX(k) + CkZ‘k’ (bk = -NVk, C k  = NVk + E k ) .  

The form of the energy spectrum may be obtained by a rotation-about the Yck)  
direction-and this corresponds precisely to the Bogoliubov transformation (Bogoliu- 
bov 1947). However, there is never any need to perform this rotation explicitly, as we 
mentioned in the Introduction, where we also noted that the final part of the general 
strategy for obtaining the form of the energy spectrum involves diagonalisation in a 
low-dimensional faithful representation of the Lie algebra. In the present case we may 
choose 

as a suitable representation in which, suppressing the k dependence for typographical 
simplicity, the reduced Hamiltonian is represented by the matrix 

The single independent invariant in this case is 

Tr M 2  = i ( c 2  - b2) 

(this would correspond to the Killi?g form in the adjoint representation). We may 
therefore diagonalise to ( c 2  - b2)’l2Z when c 2 -  b 2  is positive, and to ( b 2  - c ) X for 
c 2  - b2 < 0. The former case corresponds to a repulsive potential, and tells us that in the 
original infinite-dimensional representation the diagonal form of the Hamiltonian is 

2 1/2  A 

( E :  +2NVkEk)”2Z‘k’. 
k 

Since the spectrum of Zck’  in the only allowed infinite-dimensional representation 
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(Solomon 1971) is the natural numbers, this gives the well known discrete excitation 
spectrum of superfluid helium four. The repulsive case gives the continuous spectrum 
of X ( k ) *  

3. Superfluid fermion model 

Recognising that superfluidity in fermion systems arises as a consequence of pair 
formation in opposite momentum states, we take as our starting point a model 
Hamiltonian in which only those pairing interactions occur: 

The fermion annihilation and creation operators aka and 
mutation rules 

obey the anticom- 

[aka, a :'PI+ = 8kk'aap 

where k ,  k'  are three-momentum labels as before, and the additional suffixes cy, p are 
spin labels which may be either up (t) or down (i). We may reduce this Hamiltonian to 
exactly solvable form by using the following linearisation procedure ; for any two 
operators A and B we have the identity 

AB = ( A - ( A ) ) ( B  - (B) )+A(B)+B(A) - (A) (B)  

where the numbers (A) ,  ( B )  are the expectation values in some ground state. To the 
extent that we may ignore deviations from this ground state, we may approximate 

AB -A(B)+B(A)  

(where we have suppressed the additive c-number (A)@)) .  Applying this process to 
our model Hamiltonian leads to the reduced approximate Hamiltonian 

Rred = 1 Hk 
k 

(3.1) 

where 

Note that the summation in Hk is over spins only, and that the reduced Hamiltonian 
Rred has decoupled into a sum of independent (commuting) Hk's-just as in the boson 
case treated previously. We may therefore treat each Hk individually (suppressing the k 
subscript for typographical convenience when desirable) and, as a consequence, the 
spectrum-generating algebra we obtain for Rred will simply be a direct sum of 
isomorphic algebras associated with Hk. 

In order to identify the spectrum-generating algebra associated with the reduced 
Hamiltonian Xred, we introduce operators Ai  defined by 
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where we have suppressed the three-momentum index k.  The operators Ai obey the 
usual fermion anticommutation relations 

[Ai, AT]+ = Sii ( i ,  j = 1,2,  3,4). 
We can now define a set of sixteen operators Xii by 

. xi. = A ~ A ,  (3.3) 
which are seen to satisfy the commutation relations 

[xij, Xk/l = Sjkx' l  - S i l x k j  ; (3.4) 

this is a special case of the general result obtained in appendix 1. The commutation 
relations (3.4) are the defining relations of gl(4, R),  the Lie algebra of all real 4 x 4 
matrices, as may be readily seen by choosing the following basis of 16 independent 4 x 4 
matrices eii with the ( r ,  s) element given by 

( r ,  s, i, j = 1 ,2 ,  3 ,4)  

so that each matrix possesses precisely the one non-zero entry 1. Clearly the eii span all 
real 4 x 4 matrices, and satisfy 

( e i j h  = SirSjs  

[eij, ekil= ajkeii  - Siiekj. 

Since the set (3.3) exhausts the operators occurring in the Hamiltonian (3.2), we see that 
the spectrum-generating algebra associated with Hk for each k is a subalgebra of 
gl(4, R ) ;  more precisely, since from hermiticity only the real combinations U, can 
occur, where 

U k k  = Xkk ( k  = 1 ,2 ,3 ,4 )  

Ukl = xkl + X/k ( k  < 1 s 4) 

Ulk = i ( x k /  -Xfk)  ( k < l s 4 ) ,  

the required algebra is a subalgebra of u(4), the real algebra of Hermitian 4 X 4 matrices 
generated by the Uip 

We now write Hk in terms of the generators Xii :  

H = (Xi  1 + X22 -X33 -X44) 

+ $( VrrXI4 + vrJx13 + VJfX24 + vJJx23 +Hermitian conjugate) 

where we have again suppressed the k dependence (as well as an additive constant E )  

and written 

V ( k ,  a, P )  = v e p  for a, p = t, .1. 
Following the strategy outlined in the Introduction, we now go to the four-dimensional 
representation = eii, so that H = Z mi,Xii is represented by fi = Z miieii where the 
matrix M of coefficients = mii is given by 

M = % ' + V  (3.5) 
where 

1 E  0 
%'=-[ ] and 

2 0 -E 
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The 2 x 2 matrices E and V are defined by 

Since M is traceless, the spectrum-generating algebra associated with this anisotropic 
fermion model is a subalgebra of su(4) - so(6); we now show that it is indeed so(6). We 
may write the general 2 x 2 complex matrix V in terms of Pauli matrices T,, p = 
0, 1 ,2 ,3 ,  as 

3 

,=0 
V = (a, +ib,).r, (a,, b, real) 

so that, in terms of the generators T, U and E defined in appendix 2, the potential 
matrix Y is given by 

Y = u  T - b  a UfaoEi-boEz 

with a,  = (ao, a) ,  b, =(bo, b) .  The kinetic energy matrix is 

8 = E E ~ ,  

Thus the Hamiltonian matrix M includes the generators {Ei, Tj, Vi} of appendix 2; 
since, for example, 

[T i ,  Tj] = ieijksk, [El ,  Vi] = i Wi, 
this set closes on the 15 generators {E, S, T, U, W }  of so(6). 

this model is g, where 
Therefore, in the language of the Introduction, the spectrum-generating algebra for 

g = C g k  
k 

and each gk -s0(6). 

4. Superfluid helium three model 

Both the BCS superconductor model and the superfluid helium three model are 
obtained from the fermion model of the preceding section by specifying the spin 
transformation properties of the potential matrix V. Thus, we obtain the BCS model 
when Y is a spin singlet, and helium three when Y is a spin triplet. It is more convenient 
to apply the involutive automorphism 4 of appendix 3 when considering these 
transformation properties, as under 4 the spin operator B takes the simple form S. 
(This q5 is not the Bogoliubov automorphism.) 

Spin-singlet pairing 

[B, Y ]  = 0 

Applying 4, [q5(6), q5(Y)] = 0, that is [S,  Y’] = 0, putting V‘ = 4(Y) .  In general, 
V = a’ 8 T - 6’ * U + abEl - b& (appendix 3), so in the spin-singlet case a’  = b’ = 0,  
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and V' becomes 

V l =  abE1- bbE2 

using the commutation relations of appendix 2. 
In this case the Hamiltonian matrix M i  associated with Vi is 

M :  = &E3 + abE1- bbE2. 

The operators (El, E2, E3}  generate the so(3) subalgebra of the BCS model. This 
algebra has a one-dimensional Cartan subalgebra which we may take to be that 
generated by E3.  The Bogoliubov transformation in this case is therefore the 
automorphism sending 

M i  EE3 (4.1) 
where the coefficient E is here given by an expression similar to that in the boson case of 
§ 1, but now with positive invariant form 

I 2  1/2 E=(.s2+af + b o  ) . 
Since ab2 + 66' = a: + b: = I VTJ~', we obtain the well known energy-gap expression 

E =  (e2+A2)l/', A = I vrllo 
The automorphism (3.1) is reflected in the Fock space Hamiltonian (3.1) by the 
diagonalisation 

k 

where nkar = a L a k a ,  A k  = A - k .  

Spin-triplet pairing 

We assume that this is the case for helium three superfluid; 7f behaves as a vector under 
the spin operator 4, or, equivalently, V behaves as a vector under S. We then have a 
triplet potential 

-vk = a ' *  T - b ' .  U (ab = bb = 0). 

The Hamiltonian matrix (3.5) then becomes 

Mk = ~ E 3 + a ' *  T - b ' .  U. 

It is shown in appendix 2 that the seven operators {E3,  Ti, Vi} close on the 
so(5) - sp(4) algebra generated by {Si, Ti, Vi, E3};  this is therefore the spectrum- 
generating algebra of the triplet-pairing superfluid helium three model. 

It is sometimes convenient to specify the potential V by the single complex vector 
d = a' + ib'; we have 

1 d,  = a ;  +ib i  = - b 2 i - i a 2 = 2 ( V ~ ~ - V ~ f ) ,  

d ,  = a; +ib; = bl -ial = -Ti( V T ~  + VJJ), 

d ,  = a;  + ib; = a. + ibo = $( V ~ J  + Vjr). 

1 

Without enlarging the so(5) algebra, we may accommodate an external magnetic field 
term h * 6 in the potential 'VT, corresponding to an additional term h * S in %-. 
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Similarly, a ‘density fluctuation’ term 

[I $ + ( X ) P b  - Y ) $ ( Y )  d3X d3Y 

in second-quantised field operator form could also be added; but as this corresponds 
simply to a pE3 term in the Hamiltonian, we shall subsume such a term in the energy E .  

We therefore note that the most general superfluid helium three model in the 
context of the so(5) algebra is given by the Hamiltonian matrix 

M =  eE3+a  T - b  U +  h O S  

in our 4 X 4 matrix representation, after applying the automorphism 4 (and dropping 
the primes and k summation). 

5. The spectrum and unitary states 

In the previous section we showed that the spectrum-generating algebra of our helium 
three model is so(5). We can now employ the strategy outlined in the Introduction to 
obtain the spectrum in terms of the two invariants associated with this rank-2 algebra. 

For each momentum k, the model Hamiltonian is represented by 

M = s E 3 + a * T - b * U + h * S  (5.1) 

(where we have included a magnetic field h )  which is 

We define the following two invariants: 
2 Il = Tr M 2  = E 2  + u 2  + b2 + h2 

I2 = Tr M4 -$I: = (a  x b + 
(U  = a - a ,  . . . )  

+ (a * h)’ + (b * h)2. 

By definition the Bogoliubov automorphism sends the Hamiltonian element to a Cartan 
subalgebra; in this case 

M H hE3 +pSg 

where we have chosen as Cartan subalgebra that generated by {E3,  S3}, and A, p are real 
numbers. 

Explicitly, 

1 M*L1 A - p  -A - p  

+ P  

2 -A + p  

with 

I1 = h 2 + p 2 ,  I2 = h 2 p 2 .  

The corresponding diagonalisation of the Fock space Hamiltonian Xred is 
112 112 1J2 1J2 

%Ied H C [(I~ + 2 1 2  ) rzk? + ( I ~  - 2 1 2  n k ~ ] .  
k 
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The energy spectrum therefore has the form 

E: = ( E :  + Af)2)1’2 

where the energy gaps A f )  are given by 

Ai*)’ = a + b2 + h 2  + 21;’2 

(all the quantities on the right-hand side being functions of k). 
The energy spectrum is degenerate with a single energy gap when the invariant I2 

vanishes; this is the case for one of A or p vanishing, in which case the square of the 
matrix M (5.2) is proportional to the unit matrix. These give the so-called unitary 
states. This occurs (for F # 0) when 

a x b  + E h  = 0. 

In the absence of a magnetic field, an equivalent condition in terms of the complex 
d-vector defined in the previous section is 

d x d *  = 0. 

This is the form of condition given by, for example, Leggett (1975). 
More generally, the conjugacy classes of the Hamiltonian matrix (5.1) are 

parametrised by the real pair (A, p),  which we may take to satisfy A p 3 0, as the other 
eigenvalues may be obtained from such a pair by inner automorphisms. Extremzl cases 
are p = 0 (the unitary states) and A = p, The latter case (for which one of the excitations 
has vanishing energy) occurs wher. the vectors a, b and h form an orthogonal triad, with 
E = h and a = b. In terms of the d vector above, the condition on a and b is d d = 0. In 
the absence of h, this condition leads to a vanishing of one of the two energy gaps. We 
may rewrite this condition in terms of the potential as 

Vrr vu = a( VTL + V d 2 .  

6. Conclusions 

We have shown that an anisotropically paired Fermi superfluid can be described by a 
model Hamiltonian which has an associated dynamical group r I k  s 0 ( 6 ) ~ .  Imposing 
spin-zero pairing reduces this to the BCS model with corresponding group IIk s 0 ( 3 ) ~ ,  
while the helium three case, with spin-one pairing, has nkso(5)k  for the spectrum- 
generating group. Since, for each k, the helium three spectrum is determined by the 
rank-2 Lie algebra so(5), this leads to two energy gaps; for unitary states-when one of 
the two associated algebraic invariants vanishes-we obtain a degenerate one-gap 
spectrum. The inclusion of additional terms in the model Hamiltonian matrix (5,1), 
such as a term in the generators Wi of appendix 2 corresponding to a spin-gradient 
coupling term 

I $+(X)U  * V$(X) dx, 

would enlarge the spectrum-generating algebra to so(6) and thereby introduce an extra 
energy gap in general. 

It should be noted that this is a zero-temperature model, and so no attempt is made 
to describe the superfluid transition which is accompanied by a loss of (phase) 
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symmetry; however, just as in the boson case of § 1 where the two physical properties of 
the system (repulsive potential and attractive potential) are reflected in the two 
conjugacy classes of the so (2 , l )  spectrum-generating algebra (9 class and 2 class 
respectively), one might expect that the various physical states of superfluid helium 
three would be associated with conjugacy classes in so(5). That this is indeed the case 
will be shown elsewhere. 
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Appendix 1. Representations in terms of fermion operators 

Suppose {A,} is a set of n fermion operators, 

[A,, AfI+ = 6,s (r,  s = 1,2, . . . , n). 

Let {J,} be an n X n matrix representation of a Lie algebra g, 

[Ja, J p l =  c C 2 Y ,  
Y 

with matrix elements (J,),s and structure constants e&. Then a straightforward 
calculation shows that 

X m  =C A:(Jm)rsAs 
r, s 

is also a representation of g. Further, if the J, are Hermitian (use structure constants 
ic&) then so too are the X,. 

We may reproduce the example of § 2 of the text by taking for {J,} the n x n matrix 
representation {eij} of gl(n, R) ,  

Appendix 2. Representations of the algebra 

From the Pauli spin matrices T& (,U = 0, 1'2, 3) 

T o = [ '  T I = [  ' 1 ,  7 2 = [  -i], 73=['  -1], 
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we may define a 4 x 4 representation of u(4) by 

JFv = T~ X T ,  

with an analogous representation in terms of fermion operators, following the method 
of appendix 1. The central element Joo = T~ x T~ corresponds to 

Xoo=A;CAi +A:A2 +A:A3 +AzA,  

which is (essentially) the total momentum operator. The other 15 elements 
{.Tii, Ji0, .Toj: i, j = 1 , 2 , 3 }  generate su(4). It is convenient to separate these 15 generators 
into 5 triples; 

with 
{Ei, Si, Ti, vi, Wi) 

Ei = $ ~ i  X TO, 

Vi = 272 x Ti, 

si = $70 x Ti, 

wj = $73 x Ti. 

Ti = $71 X ~ i ,  

1 

The Si may be chosen to play the role of generators of spin (see appendix 3): 

[Si, Sj] = iejjksk, [si, q] = ieijkTk, [Si, Vi] = ieijkUk, [Si, E,] = 0. 

The other commutation relations may also readily be obtained. The 15 elements 
generate the full so(6) (-su(4)) algebra of the anisotropic Fermi superfluid model with 
Cartan subalgebra {E3, W3, S3} .  

The symplectic algebra sp(4) = u(4) fl sp(4, C) consists of 4 X 4 matrices of the form 

K+ -\I 
where the 2 x 2 complex matrices obey A =A', B = 8 (B transposed). It may be 
readily verified that the subset 

{JiF, p # 2;  Jo2)  = { ~ i  x T,, TO x 7 2 ;  p = 0 , 1 , 3 ;  i = 1 , 2 , 3 }  
has this property. This subset generates a 4 x 4 representation of the ten-dimensional 
symplectic subalgebra sp(4) - so(5). The generators are clearly isomorphic to 

{TF x Ti, 7 2  x 70; = 0, 1, 3 ; i = 1, 2, 3) 

which may be rotated to the isomorphic set 

{TF X T j ,  T 3 X T o ;  /A =o,  1, 2;  i =  1, 2, 3). 

We may rewrite these generators in terms of the previously defined triples 

{Si, Ti, Vi, E31 
which therefore generate an so(5) subalgebra. This corresponds to the superfluid 
helium three subalgebra. A maximal Abelian subalgebra (Cartan subalgebra) is 
{E39 s31. 

Appendix 3. 

We may write the spin operator U (for suppressed momentum index k) as 

U = u++u- 
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with 

(where the + and - suffixes refer to momentum +k and -k). 
In terms of A i  defined in § 2, we have by explicit evaluation 

(+I = C A:&3 X 7drfAl, 

Therefore the spin operator is represented in the 4 X 4 representation of 0 2 by 

g z  = C A:(b3 X T ~ ) ~ ~ A ~ ,  g 3  = c A: ( h o  X T ~ ) ~ ~ A ~ .  
r?l 1 9 1  hl 

B = (Wl, wz, S3). 

As this representation is not particularly convenient for calculation, we define an 
involutive automorphism 4 by 

4: so(6) + s0(6), lp2= 1, 

g * RgR-', 

where 

R = exp[ii.rr(E3 + S3 - W3)]. 

This transforms the generators of so(6) as follows: 

E +  (7'3, u3, E3), t7+ (Wl, w2, S3), T +  (U29 --U', El), 

U + (- 7'2, 7'1, E d ,  

4(B)  = s. 

Fv+ (S1, s2, W3). 
Under the automorphism 4, the spin operator transforms to S, 

The potential matrix Y = a * T - b * U + aoEl - boE2 becomes 

4 = a 4 (TI - b 4 ( U )  + a 0 4  (Ed - bo4 (E21 

= a f *  T - 6 ' .  U+abEl-bbE2 
with 

a' = ( 4 2 ,  bl, a d ,  6' = (az,  -ai, bo), ab = a3, bb = b3. 
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